The correct option is C 1002C50
Let, S=(1+x)1000+2x(1+x)999+3x2(1+x)998+......+1001 x1000
x1+xS=x(1+x)999+2x2(1+x)998+........+1000x1000+1001x10011+x
Substract above equations.
(1−x1+x)S=(1+x)1000+(1+x)999+x2(1+x)998+....+x1000−1001x10011+x
⇒S=(1+x)1001+x(1+x)1000+x2(1+x)999+......+x1000(1+x)−1001x1001
=(1+x)1001[(x1+x)1001−1]x1+x−1−1001 x1001
[Sum of G.P]
=(1+x)1002−x1002−1002 x1001
∴ coefficient of x50 in S= coefficient of x50 in [(1+x)1002−x1002−1002x1001]=1002C50