The coefficient of x50 in the expansion of (1+x)1000+x(1+x)999+x2(1+x)999+⋯+x1000 is nCk. Then the least value of n+k is equal to
A
1050
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1049
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1051
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1005
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C1051 Let y=(1+x)1000+x(1+x)999+x2(1+x)999+⋯+x1000
For the above GP a=(1+x)1000,r=x1+x,n=1001 y=(1+x)1000[1−(x1+x)1001]1−(x1+x)=(1+x)1000−x10011+x11+x=(1+x)1001−x1001
Coefficient of x50=1001C50 ∴n+k=1051