The correct options are
A 1002−992+982−972+962−952+⋯+22−12
B The sum of all 101 A.M.'s inserted between 1 and 99
Coefficient of x in the expansion (1+x)(1+2x)(1+3x)⋯(1+100x)
=1+2+3+⋯+100=100×1012=5050
Now,
1002−992+982−972+962−952+…+22−12=(1002−992)+(982−972)+(962−952)+…+(22−12)=(100+99)(100−99)+(98+97)(98−97)+…+(2+1)(2−1)=100+99+98+97+…+2+1=5050
Now,
Let n A.M.'s are inserted between 1 and 99, then the sum of them
5050=n+22[1+99]−(1+99)⇒5050=100[n+22−1]⇒5050=50n⇒n=101
Therefore 101 A.M.'s are inserted.
Now, the sum of first 20 terms of the series
1+(1+3)+(1+3+5)+(1+3+5+7)+⋯
General term of the series is
Tr=1+3+5+7⋯(2r−1)=r2⇒S=20∑r=1Tr=20∑r=1r2⇒S=n(n+1)(2n+1)6⇒S=20×21×416=2870