The correct option is C (n+1)2n
Coefficient of xn is
[nC0+3⋅ nC1+5⋅ nC2+…+(2n+1)⋅ nCn]=n∑r=0(2r+1) nCr=2n∑r=0r nCr+n∑r=0 nCr=2n∑r=0r nCr+2n
We know that,
(1+x)n=1+ nC1x+ nC2x2+…+ nCnxn
Differentiating w.r.t. x, we get
⇒n(1+x)n−1= nC1+2 nC2x+…+n nCnxn−1
Putting x=1
⇒n(2n−1)= nC1+2 nC2+…+n nCn⇒n(2n−1)=0( nC0)+ nC1+2 nC2+…+n nCn⇒n(2n)=2n∑r=0r nCr
So, the required coefficient
=n(2n)+2n=2n(n+1)