The correct option is C (1−2n).2n(n−1)2
(1−x)(1−2x)(1−22.x)(1−23.x)...(1−2n.x)
Take n = 1
∴(1−x)
Coefficient of xn=x1 is -1.
Substitute n=1, in the options
a. (1−2n+1).2n(n−1)2=(1−2n+1)21(1−1)2=(1−4)2∘=3
b. (2n+1−1).2n(n−1)2=(22−1)21(1−1)2=3×2∘=3
c. (1−2n).2n(n−1)2=(1−2(1))21(1−1)2=−1×2∘=−1