The correct options are
A nCr(3n−r−2n−r)
B nCr[3n2r−2n3r3r2r]
Let S=(x+3)n−1+(x+3)n−2(x+2)+(x+3)n−3(x+2)2+⋯+(x+2)n−1
The expression in Geometric progression
S=(x+3)n−1((x+2x+3)n−1x+2x+3−1)=(x+3)n−1(x+3)n((x+2)n−(x+3)n−1(x+3))
⇒S=−(x+2)n+(x+3)n
Coefficient of xr in S is
=nCn−r3n−r−nCn−r2n−r
=nCr(3n−r−2n−r)
=nCr(3n2r−2n3r3r2r)