The coefficient of x4 in the expansion of (1+x+x2+x3)6 in powers of x, is
110
120
130
100
Given(1+x+x2+x3)6
To find coefficient x4
using permutation and combination to solve
Hence rearranging the given expression gives
(1+x+x2+x3)n=(1+x)n(1+x2)n(1+x+x2+x3)6=(1+x)6(1+x2)6
Coefficient of x4
⇒nC0nC0nC2.nC1+nC4.nC6=6C06C2+6C2.6C1+6C4.6C6=15+(15×6)+15=120
Hence option B is correct