The coefficients of 5th, 6th and 7th terms in the expansion of (1+x)n are in A.P., find n.
We have,
(1+x)n
Now,
Coefficient of 5th term =nC5−1=nC4
Coefficient of 5th term =nC6−1=nC5 and, Coefficient of 5th term =nC7−1=nC6
It is given that these coefficients are in A.P.
∴2nC5=nC4+nC6
⇒2[n!(n−5)!5!]=n!(n−r)!4!+n!(n−6)!6!
⇒2(n−5)!5!=1(n−4)!4!+1(n−6)!6!
⇒2(n−5)(n−6)!5×4!
=1(n−4)(n−5)(n−6)!4+1(n−6)!6×5×4!
⇒2(n−5)×5=1(n−4)(n−5)+16×5
⇒25(x−5)−130=1(n−4)(n−5)
⇒12−(n−5)30(x−5)=1(n−4)(n−5)
⇒12−n+530=1(n−4)(n−5)
⇒17−n30=1n−4
⇒17n−68−n2+4n=30
⇒21n−68−m2−30=0
⇒21n−n2−98=0
⇒n2−21n+98=0
⇒n27n−14n+98=0
⇒n(n−7)−17(n−7)=0
⇒(n−7)(n−14)=0
⇒n=7 or n =14