The combined equation of the asymptotes of the hyperbola x2a2−y2b2=1is x2a2−y2b2=−1..
False
Let y=mx+c be an asymptotes of the hyperbola x2a2−y2b2=1
the abscissae of the points of intersection of y=mx+c and are the roots of equation
x2a2−(mx+c)2b2=1
x2(b2−a2m2)−2a2mcx−a2(c2+b2)=0 ......................(1)
if the line y=mx+c is a asymptote to the given hyperbola, then it touches the hyperbola at infinity.so,both the roots of equation must be infinity.
coefficient of x2=0
⇒b2−a2m2=0
m=±ba
and −2a2mc=0
⇒ c=0