y2=4(x−2)
⇒dydx=42y=2y
Let the point of tangency be (x1,y1)
⇒ (x1,y1) lies on y2=4(x−2)
⇒y21=4(x1−2)
⇒ Equation of tangent at (x1,y1)
⇒y−y1=2y1(x−x1)
yy1−y21=2x−2x1
⇒yy1−2x=y21−2x1=4x1−8−2x1
⇒yy1−2x=2x1−8⋯(i)
Now yy1−2x=2x1−8 is also tangent to x2+y2=1
⇒ Using condition of tangency for circle distance of centre from line must be equal to radius.
⇒r=1=|0−0−2x1+8|√4+y21
⇒4+y21=(2x1−8)2
⇒4+(4x1−8)=4x21+64−32x1
⇒4x21−36x1+68=0
⇒x21−9x1+17=0
⇒a+b=18