The correct option is
D 15
Let the equation of tangent to the parabola
y2=8x be
y=mx+2m It also touches the circle
x2+y2=2 ∴∣∣∣2m√1+m2∣∣∣=√2⇒m4+m2=2⇒m4+m2−2=0⇒(m2−1)(m2−2)=0⇒m=±1, m2=−2 [rejected m2=−2] So, tangents are y=x+2, y=-x-2.
They, intersect at (-2, 0).
Equation of chord PQ is -2x=2
⇒x=−1 Equation of chord RS is 0=4(x-2)
⇒x=2 ∴ Cooordinates of P, Q, R, S are P(-1,1), Q(-1,-1), R(2, 4), S(2, -4)
∴ Area of quadrilateral =
(2+9)×32=15 sq units