The common tangents to the circle x2+y2=2 and the parabola y2=8x touch the circle at the points P,Q and the parabola at the points R,S. Then the area of the quadrilateral PQRS is
Given two conics:
C1:x2+y2=2
C2:y2=8x
Lets assume common tangents touches circle at P(x1,y1) and R(x2,y2)
Then,
C1(x1,y1):x21+y21−2=0
C2(x2,y2):y22−8x2=0
The tangent space to the conics is
m1=dy1dx1=−x1y1 … (i)
m2=dy2dx2=4y2 …(ii)
The tangency condition reads:
{y2−y1=m1(x2−x1) …(iii)y1−y2=m2(x1−x2) …(iv)
On solving these four eqs, we get
x1=−1,x2=2,y1=±1,y2=±4
Therefore,
P≡(−1,1)
Q≡(−1,−1)
R≡(2,4)
S≡(2,−4)
Now the area of the quadrilateral PQRS:
12×(PQ+RS)×(Distance between PQ and RS)
=12×(2+8)×(1+2)
=12×10×3=15 sq units.