The correct option is C Equilateral triangle
x2+y2+2x=0centre(−1,0)radiusx2+y2=6x=0centre(3,0)radius=3lety=(m)(+c)isequationofcommontyangentx2+(m)(+c)2+2x=0x2+(m)(+c)2−6x=0(cm+1)2=(m2+1)c2(cm=3)2=(m2+1)c2wehave±√3y=2+3intersectionpointsare(−3,1pt0)(0±√3)distancebetweentwovertices√32+3=2√3equationoftangent√3y=−x+3√3y=x−3P=(3,0)Q=(0,√3)R=(0−√3)PQ=PR=QR=√12=2√3equailateraltriangle