The correct option is D [73,∞)
Since, the given inequality is true for all x≥2, hence required conditions are f(2)≥0 and a−1≥0
f(2)≥0⇒(a−1)4−(a+1)2+(a−1)≥0
⇒3a−7≥0⇒a∈[73,∞) ...(1)
a−1≥0⇒a≥1 ...(2)
From (1) and (2)
a∈[73,∞)
Alternate Solution:
(a−1)x2−(a+1)x+(a−1)≥0
⇒a≥x2+x+1x2−x+1
⇒a≥1+2xx2−x+1
⇒a≥1+2x+1x−1
∵x≥2
⇒x+1x≥52
⇒x+1x−1≥32
∴a≥1+232
⇒a∈[73,∞)