The correct option is C (−3π2,−π2)
Using tan−1x+cot−1x=π2
We get
(tan−1x)2+a(tan−1x)−π(π2−tan−1x)=0⇒(tan−1x)2+a(tan−1x)+πtan−1x−π22=0⇒tan−1x=−(a+π)±√a2+2aπ+3π22
As −π2<tan−1x<π2
tan−1x<π2⇒−(a+π)+√a2+2aπ+3π22<π2⇒a<−π2
tan−1x>π2⇒−(a+π)−√a2+2aπ+3π22>π2⇒a>−3π2
Therefore, aϵ(−3π2,−π2)