The complete set of values of 'a' such that x2+ax+a2+6a<0 ∀ x ∈[−1,1] is:
(−5−√212,−7+√452)
None of these
(−7−√452,−5−√212)
(−5+√212,−7+√452)
f(x)=x2+ax+a2+6a<0
⇒f(−1)<0,f(1)<0,D<0.
⇒a2−4(a2+6a) > 0, a2+7a+1<0, a2+5a+1<0
Complete set of values of 'a' such that x2−x1−ax attains all real values is :
Complete set of values of a such that x2−x1−ax attains all real values is
The complete set of values of 'a' such that x2+ax+a2+6a < 0 ∀ x ϵ [-1, 1] is: