The correct option is D [π6,π4]∪[3π4,5π6]
1+log2sinx+log2sin3x≥0
For log function to be defined, we get
sinx>0,sin3x>0sinx>0⇒x∈(0,π)⋯(1)sin3x>0⇒3x∈(0,π)∪(2π,3π)⇒x∈(0,π3)∪(2π3,π)⋯(2)
From (1) and (2), we get
x∈(0,π3)∪(2π3,π)
Now,
log2(2sinxsin3x)≥0
⇒2sinxsin3x≥1⇒2sin2x(3−4sin2x)≥1⇒8sin4x−6sin2x+1≤0⇒(2sin2x−1)(4sin2x−1)≤0⇒14≤sin2x≤12⇒12≤sinx≤1√2 (∵sinx>0)∴x∈[π6,π4]∪[3π4,5π6]