The correct option is A (−1,∞)
log is defined when
x+3>0⇒x>−3⇒x∈(−3,∞)
And (x+1)(x+2)>0⇒(x+1)(x+2)>0⇒x∈(−∞,−2)∪(−1,∞)
∴x∈(−3,2)∪(−1,∞) ...(1)
Now, log4(x+3)<log4(x+1)(x+2)⇒(x+3)<(x+1)(x+2)
When x+2>0⇒x>−2⇒x∈(−2,∞) ...(2)
(x+3)(x+2)>(x+1)⇒x2+4x+5>0 ( this is always true)
Now from (1) and (2)
x∈(−1,∞)