The correct option is D nπ+3π4,kπ+tan−1(43)(n,kεI)
The given equation is equivalent to
7cos2x+sinxcosx−3(sin2x+cos2x)=0
or 3sin2x−sinxcosx−4cos2x=0
Since cosx=0 does not satisfy the given equation .
Divide throughout by cos2x we get
3tan2x−tanx−4=0
⇒(3tanx−4)(tanx+1)=0
⇒tanx=43 or tanx=−1
x=kπ+tan−143
or x=nπ+3π4(n,k∈I)
Hence, the general solution is given by (d) only.