The correct option is B x∈(−1,1−√3)∪(1+√3,3)
log1/3(x+1)>log3(3−x)
For log to be defined
(x+1)>0 and (3−x)>0
⇒x>−1 and x<3
⇒x∈(−1,3) ⋯(1)
Now, −log3(x+1)>log3(3−x)
⇒log3(x+1)−1>log3(3−x)
⇒1x+1>(3−x)
⇒x2−2x−2x+1>0
⇒x∈(−1,1−√3)∪(1+√3,∞) ⋯(2)
From (1) and (2)
x∈(−1,1−√3)∪(1+√3,3)