The correct option is B (−2,3)
log3(x+2)(x+4)+log1/3(x+2)<(1/2)log√37
Clearly, this is defined for x>−2
log(x+2)log3+log(x+4)log3+log(x+2)log(13)<12log712log3
log(x+2)log3+log(x+4)log3−log(x+2)log3<log7log3
⇒log(x+4)log3<log7log3
⇒log3(x+4)<log3(7)
x+4<7
⇒x<3
The solution set is (−2,3)