The correct option is A True
LetABCbeaequilateraltriangle
A(0,0),B(z1),C(z2)
AB=|z1|,AC=|z2|,BC=|z1−z2|
sinceABCisanequilateraltriangle
Let|z1|=|z2|=|z1−z2|=k
case1
|z1|=k
squaringbothsides
|z1|2=k2
⇒(z1)(¯¯¯¯¯z1)=k2
⇒¯¯¯¯¯z1=k2z1
⇒−¯¯¯¯¯z1=−k2z1.........(i)
case2
|z2|=k
squaringbothsides
|z2|2=k2
⇒(z2)(¯¯¯¯¯z2)=k2
⇒¯¯¯¯¯z2=k2z2
⇒¯¯¯¯¯z2=k2z2.........(ii)
case3
|z1−z2|=k
squaringbothsides
|z1−z2|2=k2
⇒(z1−z2)(¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1−z2)=k2
⇒¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1−z2=k2z1−z2
⇒¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1−z2=k2z1−z2.........(iii)
adding(i)(ii)(iii)
0=k2[−1z1+1z2+1z1−z2]
⇒0=−1z1+1z2+1z1−z2
⇒0=−z2(z1−z2)+z1(z1−z2)+z1z2z1z2(z1−z2)
⇒0=−z1z2+z22+z21−z1z2+z1z2
⇒0=−z1z2+z22+z21
⇒z1z2=z22+z21
⇒1=z2z1+z1z2
Hencethegivenstatementistrue