The correct option is C 6+17i
Let z=x+iy
Then
∣∣∣z−12z−8i∣∣∣=53⇒∣∣∣x+iy−12x+iy−8i∣∣∣=53⇒∣∣∣(x−12)+iyx+(y−8)i∣∣∣=53⇒9(x−12)2+9y2=25x2+25(y−8)2⇒9(x2+144−24x)+9y2=25x2+25(y2−16y+64)⇒16x2+16y2+216x−400y+304=0⇒2x2+2y2+27x−50y+38=0⋯(1)
And
∣∣∣z−4z−8∣∣∣=1⇒∣∣∣x+iy−4x+iy−8∣∣∣=1⇒(x−4)2+y2=(x−8)2+y2⇒−8x+16=−16x+64⇒8x=48⇒x=6⋯(2)
From equation (1) and (2), we get
72+2y2+162−50y+38=0⇒y2−25y+136=0∴y=8,17
Hence, the values of z are 6+8i,6+17i
Alternate Solution:
Check all the options
When z=6−8i
∣∣∣z−12z−8i∣∣∣=102√73=5√73≠53
When z=6+8i
∣∣∣z−12z−8i∣∣∣=106=53
∣∣∣z−4z−8∣∣∣=√68√68=1
Both the conditions are satisfied
When z=6+17i
∣∣∣z−12z−8i∣∣∣=5√133√13=53
∣∣∣z−4z−8∣∣∣=√293√293=1
Both the conditions are satisfied
When z=6−17i
∣∣∣z−12z−8i∣∣∣=5√13√661≠53