The complex numbers 2n(1+i)2n+(1+i)2n2n, nϵZ, is equal to
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
{1+(−1)n}.i−n
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C{1+(−1)n}.i−n Simplifying, we get ei−2nπ4+ei2nπ4 =ei−nπ2+einπ2 =1+ei2nπ2einπ2 =1+einπeinπ2 =i−n[1+(−1)n] Hence, option 'C' is correct.