The complex numbers z = x + iy which satisfy the equation | z−4iz+4i | = 1, lie on
z - = 0
x - axis
|z−4i| = |z+4i|
|x+iy−4i| = |x+iy+4i|
⇒√x2+(y−4)2 = √x2+(y+4)2
⇒ x2 + y2 - 8y +16 = x2 + y2 + 8y + 16
16y = 0
y = 0
⇒ x - axis - (d)
option (b):
z + ¯z = x+iy+x−iy
⇒ x = 0 - not correct
option (c):
z - ¯z = 0 ⇒ y = 0 - correct
|z - z1 |= |z - z2 |
⇒ z lies on the perpendicular bisector of z1 and z1
In this case z1 = - 5i, z2 = +5i
⇒ The perpendicular bisectors is x - axis