The correct option is A 53(^i−2^j+^k)
Let, two vectors be →a=2^i−3^j+2^k, →b=^i+^j+^k
We know the component of vector of →a perpendicular to →b can be given by:
→c=→a−⎛⎜⎝→a.→b|→b|2⎞⎟⎠→b⋯(i)
Now,
→a.→b=(2^i−3^j+2^k).(^i+^j+^k)
⇒→a.→b=2−3+2=1
Now putting all these values in equation (i), we will get:
→c=(2^i−3^j+2^k)−1(√3)2×(^i+^j+^k)
=(2^i−3^j+2^k)−13×(^i+^j+^k)
=(2−13)^i+(−3−13)^j+(2−13)^k
=53^i−103^j+53^k
⇒→c=53(^i−2^j+^k)