Accordingtotheequation:ax2+2hxy+by2=0,a1x2+2h1xy+b1y2=0lets,slopeofequation:m,m1,m,m2sumofroots:m+m1=−2hb,m+m2=−2h1b1⇒m.m1=ab,m1=abm,⇒m.m2=a1b1,m2=a1b1m⇒m+abm=−2hb,⇒m+a1b1m=−2h1b1m−2hb+abm=0−−−(i),m−2hb1+a1b1m=0−−−(ii)Now,wholeequmultiplybybm.multiplybyb1mbm2+2hm+a=0,b1m2−2h1m+a1=0constantlineslop:m=−2h+√4h2−4ab2b,m=−2h1+√4h12−4a1b12b1m=−h+√h2−abb,m=−h1+√h12−a1b1b1bothequarerepresentoneline:⇒−h+√h2−abb=−h1+√h12−a1b1b1⇒−hb1+b1√h2−ab=−h1b+b√h12−a1b1Now,squaringbothside,(h1b−hb1)2=(b√h12−a1b1−b1√h2−ab)2⇒h12b2+h2b12−2h1hbb1=b2(h12−a1b1)+b12(h2−ab)−2bb1(√h12−a1b1√h2−ab)⇒h12b2+h2b12−2h1hbb1=b2h12−b2a1b1+b12h2−b12ab−2bb1(√h12−a1b1√h2−ab)⇒−2h1hbb1=−b2a1b1−b12ab−2bb1(√(h12−a1b1)(h2−ab))⇒−2h1hbb1=−b2a1b1−b12ab−2bb1(√(h12h2−h12ab−h2a1b1+a1b1ab))⇒b2a1b1+b12ab−2h1hbb1=−2bb1(√(h12h2−h12ab−h2a1b1+a1b1ab))⇒((a1b+ab1)−(2h1h))=−2(√(h12h2−h12ab−h2a1b1+a1b1ab))wholesquaringbothside:⇒[(a1b+ab1)−(2h1h)]2=[−2(√(h12h2−h12ab−h2a1b1+a1b1ab))]2⇒a12b2+a2b12+4h12h2+2aa1bb1−4a1bh1h−4ab1h1h=4(h12h2−h12ab−h2a1b1+a1b1ab)⇒a12b2+a2b12+4h12h2+2aa1bb1−4a1bh1h−4ab1h1h=4h12h2−4h12ab−4h2a1b1+4a1b1ab⇒a12b2+a2b12+2aa1bb1−4a1bh1h−4ab1h1h=−4h12ab−4h2a1b1+4a1b1ab∴(a1b+ab1)2=4(ah1−a1h)(hb1−h1b).proveSothatoneofthelineiscoincident.