The correct option is C ac3=b3d
As roots are in G.P then let α,β,γ be the roots of ax3+bx2+cx+d=0
Such that αγ=β2
S3=αβγ=−da⇒β3=−da⇒β=(−da)13
Substituting this in equation we get
a⎛⎜
⎜⎝(−da)13⎞⎟
⎟⎠3+b⎛⎜
⎜⎝(−da)13⎞⎟
⎟⎠2+c(−da)13+d=0⇒−d+b(−da)23+c⎛⎜
⎜⎝(−da)13⎞⎟
⎟⎠+d=0⇒ac3=b3d