The correct option is
C 2q3−3pqr+r2=0Given that the roots of x3+3px2+3qx+r=0 are in H.P. (1)
Let x=1x
⇒(1x)3+3p(1x)2+3q(1x)+r=0
Multiplying by x3 throughout; we get
x3(1x)3+x33p(1x)2+x33q(1x)+rx3=0
⇒rx3+3qx2+3px+1=0 (2)
The roots of the equation (2) being reciprocal of the roots of the equation (1) must be in A.P.
Let the roots of eq. (2) be α−β,α,α+β
∴ from equation (2); we get
sum of the roots=α−β+α+α+β=−3qr
⇒3α=−3qr
⇒α=−qr
Since α is a root of (2)
∴r(−qr)3+3q(−qr)2+3p(−qr)+1=0
⇒−q3r2+3q3r2−3pqr+1=0
⇒2q3−3pqr+r2=0
∴ The required condition is 2q3−3pqr+r2=0