The correct option is D 43,45,...,89
Let n consecutive odd integers are 2m+1,2m+3,...,2m+2n−1
Now according to problem
(2m+1)+(2m+3)+....+(2m+2n−1)
=452−212
⇒2m+2m+.....(n times)+2m+1+3+....+(2n−1)
=452−212
⇒2mn+n2=452−212
⇒(m+n)2−m2=452−212
⇒(n+m)=45,m=21⇒n=24
⇒ Consecutive odd integers are 43,45,47,...,89
Hence choice (d) is correct answer.