The constant c of Rolle's theorem for the function f(x)=logx2+ab(a−b)x in [a,b] where 0∉[a, b] is
We have,
The function f(x)=logx2+ab(a+b)xin[a,b]
Now,
x∈(a,b)
∴x2+ab(a+b)x∈R+ve
We know that,
(1). log with the positive quantities as it domain is continuous.
∴f(x) is continuous on [a,b].
(2).f(x)=log(x2+ab)−log(a+b)x
=log(x2+ab)−log(a+b)x−logx
On differentiation and we get,
f′(x)=2xx2+ab−0−1x∵x∈(a,b)
So, f′(x) is exists on (a,b).
(3).f(a)=log(a2+ab(a+b)a)=log(1)=0
f(b)=log(b2+ab(a+b)b)=log(1)=0
∴f(a)=f(b)
Then,
There exists at least one real.
c∈(a,b) such that f′(c)=0.
Now,
f′(c)=0
⇒2cc2+ab−1c=0
⇒2cc2+ab=1c
⇒2c2=c2+ab
⇒c2=ab
⇒c=√ab∈R+ve
Hence, this is the answer.