The coordinates of a point at unit distance from the lines 3x - 4y + 1 = 0 and 3x + 6y + 1 = 0 are
(65,−110)
(−25,−1310)
(−85,310)
Let (x, y) be the coordinate of the point.
3x−4y+1√32+42=±1 and 8x+6y+1√82+62=±1
3x - 4y - 4 = 0 . . . (1)
3x - 4y + 6 = 0 . . . (2)
8x + 6y - 9 = 0 . . . (3)
8x + 6y + 11 = 0 . . . (4)
Solving (1) and (3) we get (x,y) =(65,−110).
(1) and (4) we get (x, y) =(−25,−1310)
(2) and (3) we get (x, y) =(0,32)
and (2) and (4) we get (x, y) =(−85,310)