The correct option is B (−7,11,−4)
Let A(1,−1,0) be a point on given line x−12=y+1−3=z
Assuming x−12=y+1−3=z=t,
The coordinates of any point P on the given line can be (2t+1,−3t−1,t)
Given, |−−→AP|=4√14
⇒(4√14)2=(2t+1−1)2+(−3t−1+1)2+(t)2
⇒(4√14)2=(2t)2+(−3t)2+(t)2
⇒t=±4
With the corresponding values of t we have two possible values of P which are (9,−13,4) and (−7,11,−4) out of which, the nearest to origin is (−7,11,−4)