Let the coordinates of the vertices be A=(x1,y1),
B=(x2,y2),
C=(x3,y3)
∴ Coordinates of D is (x1+x22,y1+y22)=(2,1)
⇒x1+x22=2
⇒x1+x2=4⟶(1)
and, y1+y22=1
⇒y1+y2=2⟶(2)
Coordinates of E is (x2+x32,y2+y32)=(5,3)
⇒x2+x32=5
⇒x2+x3=10⟶(3)
and, y2+y32=3
⇒y2+y3=6⟶(4)
Coordinates of F is (x1+x32,y1+y32)=(3,7)
⇒x1+x32=3
⇒x1+x3=6⟶(5)
and, y1+y32=7
⇒y1+y3=14⟶(6)
Solving equations (1), (3), (5) we get,
x1=0, x2=4, x3=6
Solving equations (2), (4), (6) we get,
y1=5, y2=−3, y3=9
∴ coordinates of the vertices will be A=(0,5)
B=(4,−3)
C=(6,9)
∴ Lengths of AB=√(−4)2+82
=2√5
BC=√(−2)2+122
=2√37
CA=√62+42
=2√13
The equations of the lines AB
⇒(y−5)=−3−54−0(x−0)
⇒2x+y=20
BC⇒(y+3)=9+36−4(x−4)
⇒6x−y=27
CA⇒(y−9)=5−90−6(x−6)
⇒2x−3y=−15.