The coordinates of the points A,B and C are (6,3), (-3,5)(4,-2) respectively. P (x,y) is any point in the plane. Show thatar(PBC)÷ar(triangleABC)=|(x+y−2)÷(7)|
Open in App
Solution
Area of ΔPBC==12|x(5−(−2))+(−3)(−2−y)+4(y−5)| =12|7x+6+3y+4y−20| =12|7x+7y−14|=72|x+y−2| |||ly, Area of ΔABC=12|6(5−(−2))+(−3)(−2−3)+4(3−5)| =12|6×7+(−3)(−5)+4(−2)| =12|42+15−8|=12|49|=492 ∴AreaofΔPBCAreaofΔABC=72|x+y−2|492=|x+y−2|7 =∣∣x+y−27∣∣