The correct option is
C (1+√32,7−5√32) or
(1−√32,7+5√32)Let the vertices of the equilateral triangle be A,B and C
Let A=(3,4),B=(−2,3) and C=(x,y)
Since ABC is an equilateral triangle,AC=BC=AB
By distance formula,
AC=√(x−3)2+(y−4)2=√x2−6x+y2−8y+25
BC=√(x+2)2+(y−3)2=√x2+4x+y2−6y+13
AB=√(−2−3)2+(3−4)2=√26
Now ,AC=BC
⇒√x2−6x+y2−8y+25=√x2+4x+y2−6y+13
Squaring both sides, we get
⇒x2−6x+y2−8y+25=x2+4x+y2−6y+13
⇒−6x−8y+25−4x+6y−13=0
⇒−10x−2y+12=0
⇒5x+y=6
⇒y=6−5x
Also,AC=AB
⇒√x2−6x+y2−8y+25=√26
⇒x2−6x+y2−8y+25=26
⇒x2+y2−6x−8y=1
Substituting y=6−5x in the above equation, we get
⇒x2+(6−5x)2−6x−8(6−5x)=1
⇒x2+36+25x2−60x−6x−48+40x=1
⇒26x2−26x−13=0
⇒2x2−2x−1=0
Solving the above quadratic equation, we get
x=2±√4−4×2×−14=2±2√34=1±√32
y=6−5x=6−5(1±√32)=12−5±5√32=7±√32
Hence, the coordinates of the third vertex is (1+√32,7+5√32) or (1−√32,7−5√32)