The coordinates of the vertices of a triangle are (1,2),(2,3),(3,1). Find the coordinates of the centre of its circumcircle and the circumradius.
Circumcentre (136,116)
Circumradius = 5√26
Let A(1,2), B(2,3), C(3,1) be the vertices of ΔABC and P(x,y) be the circumcentre of ΔABC.
PA =PB =PC (radii of same circle)
PA2=PB2
(x−1)2+(y−2)2=(x−2)2+(y−3)2
⇒x2−2x+1+y2−4y+4=x2−4x+4+y2−6y+9
⇒−2x−4y+5=−4x−6y+13
⇒2x+2y=8
⇒x+y=4,
x =4 -y .......(i)
Again,
PB2=PC2
(x−2)2+(y−3)2=(x−3)2+(y−1)2
x2−4x+4+y2−6y+9=x2−6x+9+y2−2y+1
⇒−4x−6y+13=−6x−2y+10
⇒2x−4y=−3
⇒2(4−y)−4y=−3, from (i)
⇒8−2y−4y=−3⇒6y=11
∴y=116
From (i), x=4−116=136
Circumcentre (136,116)
Circumradius = PA=√(136−1)2+(116−2)2
=√(76)2+(−16)2
=√(5036)=5√26.