The correct options are
A f′(1)<0
B f′(x)≠0 for any x∈(1,3)
C f(2)<0
f(x)=xF(x)
Differentiating both side w.r.t x
f′(x)=F(x)+xF′(x)
∴f′(1)=F(1)+F′(1)=0+F′(1)<0∵F′(x)<0∀x∈(12,3)
f(2)=2F(2)<2F(1)<0, Since F(x) is decreasing function in the given interval
also f′(x)<0∀x∈(1,3)⇒f(x)≠0 for any xϵ(1,3)