Now we can frame according to the given information as
4x+3y+2z=60−−−−−(1)
2x+4y+3z=10−−−−−(2)
6x+2y+3z=70−−−−−(3)
This is of the form AX=B then X=A−1B
⎡⎢⎣432246623⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣601070⎤⎥⎦
where A=⎡⎢⎣432246623⎤⎥⎦X=⎡⎢⎣xyz⎤⎥⎦B=⎡⎢⎣601070⎤⎥⎦
Now lets find (adj A)
m11=∣∣∣4623∣∣∣=12−12=0,m11=∣∣∣2663∣∣∣=6−36=−30m21=∣∣∣2462∣∣∣=4−24=−20,m21=∣∣∣3223∣∣∣=9−4=5m31=∣∣∣4263∣∣∣=12−12=0,m21=∣∣∣4362∣∣∣=8−18=−10m33=∣∣∣3246∣∣∣=18−8=10,m32=∣∣∣4226∣∣∣=24−4=20
m33=∣∣∣4324∣∣∣=16−6=10
A11=(−1)1+1(0)=0
A12=(−1)1+2(−30)=30
A13=(−1)1+3(−20)=−20
A21=(−1)2+1(5)=−5
A22=(−1)2+2(0)=0
A23=(−1)2+3(−10)=10
A31=(−1)3+1(10)=10
A32=(−1)3+2(20)=−20
A33=(−1)3+3(10)=10
∴adjA=⎡⎢⎣A11A21A31A12A22A32A13A23A33⎤⎥⎦=⎡⎢⎣0−510300−20−201010⎤⎥⎦
where A−1=1|A| ( adj A) we know |A|=50
A−1=150⎡⎢⎣0−510300−20−201010⎤⎥⎦
X=A−1B to solve the equation
∴⎡⎢⎣xyz⎤⎥⎦=150⎡⎢⎣0−510300−20−201010⎤⎥⎦⎡⎢⎣609070⎤⎥⎦
∴⎡⎢⎣xyz⎤⎥⎦=150⎡⎢⎣0−4501060−20−201010⎤⎥⎦⎡⎢⎣609070⎤⎥⎦
⎡⎢⎣xyz⎤⎥⎦=150⎡⎢⎣250400400⎤⎥⎦
∴⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣588⎤⎥⎦
x=5,y=8,z=8