The correct option is A (ln2,−1)
y=coshx−3sinhx meets y=−1 at (k,−1)
This gives −1=coshk−3sinhk
⇒−1=12(ek+e−k)−32(ek−e−k)
=12[ek+e−k−3ek+3e−k]
=12[4e−k−2ek]
=2e−k−ek
or 2e−k−ek+1=0
Multiplying by ek we get
2−e2k+ek=0
Let ek=x then
2−x2+x=0
Rearranging, we get
x2−x−2=0
The factors: (x−2)(x+1)=0
Hence,x=2,−1
⇒ek=2 or −1
∴k=ln2
∵ex is positive for all x
The x−coordinate is ln2