The correct option is
C parabola
The equations
x=t2+t+1 and
y=t2−t+1Subtracting y from x, we get
x−y=2t
⇒ t=x−y2 ----- ( 1 )
Now, adding x and y we get,
⇒ x+y=2t2+2 ----- ( 2 )
Substituting the value of t from equation ( 1 ) in equation ( 2 ), we get
x+y=2(x−y2)2+2
⇒ x+y=2×x2+y2−2xy4+2
⇒ x+y=x2+y2−2xy2+2
⇒ 2x+2y=x2+y2−2xy+4
⇒ x2+y2−2xy+4−2x−2y=0 ----- ( 3 )
The general second degree equation is of the form
ax2+2hxy+by2+2gx+2fy+c=0 ----- ( 4 )
Comparing equations ( 3 ) and ( 4 ), we have
a=1,h=−1,b=1,g=−1,f=−1 and c=4
This equation represents parabola if h2−ab=0
h2−ab=(−1)2−(1)(1)=1−1=0
∴ The equation ( 3 ) represents a parabola.