The correct option is C A parabola
We have, x=t2+t+1 .... (i)
and y=t2−t+1 .... (ii)
Now, x+y=2(1+t2) .... (iii)
and x−y=2t .... (iv)
Now, from Eqs. (iii) and (iv), we get
x+y=2[1+(x−y2)2]
⇒x+y=2[4+x2+y2−2xy4]
⇒x2+y2−2xy−2x−2y+4=0 .... (v)
On comparing with, we get
ax2+2hxy+by2+2gx+2fy+c=0
We get, a=1,b=1,c=4,h=−1,g=−1,f=−1
△=abc+2fgh−af2−bg2−ch2
Now, △=1⋅1⋅4+2(−1)(−1)(−1)−1×(−1)2−1×(−1)2−4(−1)2
=4−2−1−1−4
=−4, therefore, △≠0
and ab−h2=1⋅1−(1)2=1−1=0
So, it is equation of a parabola.