The correct option is D (1, 0)
dydx−exy[xdydx+y]+1=0
Or
dydx[1−x.exy]+1−y.exy=0
Or
dydx=−(1−y.exy)1−x.exy
Now
1−xexy=0 since the slope of the tangent is 900.
Hence
xexy=1
Or
x(x+y)=1
Or
x2+xy=1
Or
y=1−x2x
Or
y=1x−x ...(i)
Considering y=0,
x2=1
x=±1.
Hence we get 2 points (1,0) and (−1,0).
Out of these 2, only (1,0) lies on the curve.
Hence the required point is (1,0).