The correct options are
A a=−2 and b<−1127
B a=3 and b<−12
f(x)=a2x3−0.5ax2−2x−b⇒f′(x)=3a2x2−ax−2
x=13 is a critical point.
∴f′(13)=0
⇒a23−a3−2=0⇒(a+2)(a−3)=0
⇒a=−2,3
For a=−2,3,f(13)>0, so both values are acceptable
When a=−2
f(13)=433+132−23−b>0⇒b<−1127
When a=3
f(13)=933−32×32−23−b>0⇒b<−12