dydx=y3ex+y2
⇒dxdy=exy3+1y
⇒−ye−x.dxdy=−1y2−e−x
⇒e−x−ye−xdxdy=−1y2
⇒ddy(ye−x)=−1y2
⇒ye−x=1y+C
The curve passes through (0,2).
⇒2=12+C⇒C=32
∴ The solution is ye−x=1y+32 ⋯(1)
Solving (1) with x=ln5, we get
15y=1y+32
⇒2y2−15y−10=0
Given, the solutions are y=α and y=β
∴α+β=152=7.50