The correct option is C (1,0)
We have, x+y=exy⇒(1)
Differentiate both sides w.r.t. x we get,
1+dydx=exy(y+xdydx)
⇒dydx=yexy−11−xexy
Now for tangent to be y-axis, ∣∣∣dydx∣∣∣→∞
⇒1−xexy=0⇒(2)
Solving (1) and (2) we get, (x,y)=(1,0), which is the required point