The correct option is D y=a(e4x−e4)
We have, y′′−4y′=0 .....(1)
Put z=y′⇒z′=y′′
Thus (1) becomes, z′−4z=0
⇒dzz=4dx
Integrating we get,
lnz=4x+c
⇒z=e4x+c
⇒dydx=e4x+c
Integrating we get, y=e4x+c4+k
Now using y(1)=0⇒0=e4+c4+k⇒k=−e4+c4
Thus solution is,
y=e4x+c−e4+c4=ec4(e4x−e4)=a(e4x−e4)
Where a=ec4= any constant