The correct option is B (−1,0)
dydx+exy[xdydx+y]+1=0
Or
dydx[1+x.exy]+1+y.exy=0
Or
dydx=−(1+y.exy)1+x.exy
Now
1+xexy=0 since the slope of the tangent is 900.
Hence
xexy=−1
Or
x(−x−y)=−1
Or
x2+xy=1
Or
y=1−x2x
Or
y=1x−x ...(i)
Considering y=0,
x2=1
x=±1.
Hence we get 2 points (1,0) and (−1,0).
Out of these 2, only (−1,0) lies on the curve.
Hence the required point is (−1,0).