The dc's (l,m,n) of two lines are connected between the relation l+m+n=0, lm=0, then the angle between the lines is
We know that,
cosθ=−→b1.→b2−→|b1|∣∣∣→b2∣∣∣ ...... (1)
Given that,
l+m+n=0
l+m=−n
−(l+m)=n
And, lm=0
So,
Either l=0 or m=0
When, l=0, then
m=−n
And,
(l,m,n)=(0,1,−1)
When, m=0, then
l=−n
And,
(I,m,n)=(1,0,−1)
Calculate b1⋅b2.
b1.b2=(0,1,−1).(1,0,−1)
=0+0+1
=1
Therefore,
|b1|=√02+12+(−1)2=√2
|b2|=√02+12+(−1)2=√2
Now, substitute the values in equation (1).
cosθ=→b1.→b2∣∣∣→b1∣∣∣∣∣∣→b2∣∣∣
⇒cosθ=1√2.√2=12
⇒θ=π3
Hence, the angle between the lines is π3.