The correct option is D None of these
Put x=tanθ and y=tanϕ. Then √1+x2=secθ,√1+y2=secϕ, and the equation becomes
secθ+secϕ=A(tanθ secϕ−tanϕ secθ)
⇒cosϕ+cosθcosθcosϕ=A(sinθ−sinϕcosθcosϕ)⇒2cosθ+ϕ2cosθ−ϕ2=2Asinθ−ϕ2cosθ−ϕ2⇒cotθ−ϕ2=A⇒θ−ϕ=2cot−1A⇒tan−1x−tan−1y=2cot−1A
Differentiating this, we get 11+x2−(11+y2)dydx=0, which is a differential equation of degree 1.